Unirac

Solar Mounting for Hurricane Safety Revisited with Miami-Dade NOA

SHARE THIS:

Share on facebook
Share on twitter
Share on linkedin
Share on email

Climate conditions are progressively getting more severe, underscoring the urgent need for localized and globalized solutions. Recent data from the National Centers for Environmental Information reinforces this reality. In 2023 alone, the U.S. witnessed a staggering 28 confirmed weather/climate events, with 19 severe storm events and 2 tropical cyclones among them—a stark reminder of our vulnerability.

However, amidst these challenges there’s a silver lining: the solar energy sector stands poised to capitalize on the transition to clean and renewable energy sources. With the demand for solar energy surging, the infrastructure supporting clean energy becomes increasingly vital.

This presents a dual opportunity for the solar-mounting industry: firstly, to bolster solar mounting systems against severe weather conditions driven by climate change, and secondly, to adapt racking materials and products to evolving climate trends.

Companies that prioritize developing resilient mounting systems stand to gain a competitive edge while also building trust through compliance with regulations and building codes, thereby driving further growth in the solar industry.

Compliance with Stringent Building Regulations in Hurricane Prone Areas

Solar manufacturers and installers may lack the motivation to implement necessary racking changes due to an underpublicized disaster landfall count. However, considering the NOAA’s objective data point, 2023 was recorded as the fourth most active Atlantic hurricane season on record, with the sheer number of 20 named storms far exceeding the annual average of 14. This increase clearly emphasizes the effects of changing climate dynamics. While not all storms move inland, those that do make landfall cause massive damage, highlighting the crucial role of stringent building regulations in hurricane-prone areas.

In light of these extreme weather dynamics regulation compliance transcends being a mere bureaucratic obligation and becomes a critical line of defense against devastating impact of natural disasters. Solar systems and solar racking standards are inclusive in these regulatory mitigations standards. Adhering to rigorous building standards designed for the High Velocity Hurricane Zone (HVHZ) ensures that racking manufacturers play an active role in mitigating risk for their customers and the public at large. For solar mounting installers, this means using only robustly engineered mounting solutions, high-wind-resistant materials, and meticulous installation practices. While these systemic measures might seem like extra steps, they are in fact investments that contribute to long-term structural resilience and sustainability, thereby generating confidence for solar in vulnerable regions.

Prioritizing compliance with building codes goes beyond customer safety. Here’s how:

  • Reduced Costs: Hurricane-resistant solar mounting systems minimize damage and repair costs for homeowners and businesses, making solar a more financially sound option.
  • Environmental Impact: Rigorously engineered mounting systems have a higher wind load capacity and are less likely to become flying debris in severe weather conditions, minimizing storm damage to surrounding structures. Additionally, an inherently longer system lifespan reduces associated environmental costs..

Prioritizing safety through compliance allows solar racking manufacturers and installers to cultivate trust with potential customers in hurricane zones. This can lead to:

  • Market Growth: A focus on safety can drive increased adoption of solar energy in these regions, which automatically means increased demand for racking solutions.
  • Industry Image: Demonstrating a commitment to responsible practices enhances the overall image of the solar industry, attracting further investment and innovation.

As climate change intensifies hurricane activity, the solar industry must strive to develop more relevant building codes, and by adhering to these evolving regulations, solar mounting manufacturers can position themselves as leaders in sustainable and climate-resilient design. A closer connection between manufacturers, installers, and regulators can ensure consistent safety across the industry.

Miami-Dade NOA: A Seal of Approval for Quality and Safety

Storms and their destructive winds are a natural concern for anyone living in hurricane-prone Southwest Florida. Here, the constant threat of extreme wind, rain, and flooding introduces an additional layer of complexity for those considering going solar, as high winds can cause severe damage to rooftops, potentially damaging solar installations. In case of a catastrophic weather event, the entire roof might come off with the solar mounting still attached, or areas with panel attachment points could sustain considerable damage. The additional weight and potential wind shear from improperly engineered solar mounting systems can exacerbate this damage, creating leaks and contributing to compromised roof integrity.

The regions stringent building codes serve as a resolution for this concern, which is imperative for mitigating the risks posed by extreme weather events, especially in regions like Miami-Dade County, which falls within the High-Velocity Hurricane Zone (HVHZ). Miami-Dade County has the most stringent requirements in the US, demanding solar mount systems with exceptional wind resistance.

NOA-certified systems are engineered for this exact scenario, and though solar racking and mounting are new to the NOA product approval process, Unirac became the first manufacturer to receive it in June 2020 for its SOLARMOUNT PV mounting system. Using wind load calculations (based on building codes), Unirac’s mounting systems are designed to resist extreme wind loads, ensuring maximum security. Therefore, a Miami-Dade NOA signifies that the solar panel mounting system has undergone rigorous testing to ensure it meets these stringent requirements. However, obtaining a Miami-Dade NOA approval is no small feat. It involves thorough product evaluations, inspections of manufacturing facilities to ensure quality control, and independent lab testing to ensure quality and resilience.

Ernest Gallegos, Unirac’s Director of Products, aptly describes a Miami-Dade NOA as the gold standard of product approvals for high-wind regions. This NOA achievement underscores Unirac’s commitment to delivering top-quality products with exceptional engineering, aligning with our promise of ‘Better Solar Starts Here.’ This dedication not only ensures customer satisfaction but also enables businesses to reduce costs and focus on growth.

What does a Miami-Dade NOA mean for Customers?

  • Investment protection: Customers can be confident that their solar mounts are built to endure even the strongest storms. Replacing a damaged roof after a hurricane is a significant expense. NOA-compliant mounting systems can help you avoid that cost altogether.
  • Peace of mind: For customers, choosing a Miami-Dade NOA-certified solar mounting system means you can be confident in the longevity of your investment.

Competitive Advantage for Solar Installers:

  • Marketing Leverage: Miami-Dade NOA compliance can be a strong selling point. It differentiates a company from competitors and showcases commitment to quality and customer safety.
  • Nationwide Recognition: While Miami-Dade County sets the bar high, many other regions recognize their NOA as an ideal standard, and by offering NOA-compliant mounting systems, you cater to a broader market.

Fortifying Against Nature: Engineering for Extreme Weather Conditions

Solar mounts must be built tough enough to endure intense winds and rain—hurricanes present unique threats. Florida, for example, has experienced extreme wind speeds exceeding 140 mph, heavy rainfall, flooding, and flying debris. These elements demand special considerations for solar installations.

Several crucial factors come into play when installing solar panels in hurricane-prone areas. First, a thorough evaluation of the property’s structural integrity is essential. This helps determine the appropriate mounting system for withstanding high winds and potential impacts. Understanding local building codes in hurricane zones are paramount to ensure the racking systems comply with wind load requirements. Choosing reputable solar mounting manufacturers with proven hurricane-resistant systems is the next and most crucial step. Look for companies that adhere to stringent engineering and testing practices, going above and beyond to ensure safety.

The reasoning behind customer research and opting for reliable companies with reputable products is simplistic but vital. The entire solar array, once assembled, acts as a cohesive single unit. However, wind uplift on the panels becomes a major concern due to the array’s large surface area, and the mounting system is the real assembled component that withstands these pressures. Wind loads can vary depending on the location and landscape. Stronger winds are likely near the coast, while residential areas might offer some protection in the form of wind reduction. These variations represent deliberate considerations that companies must account for during product design and testing. Therefore, selecting the most appropriate mounting and racking solution is key to keeping arrays secure in high-velocity hurricane zones.

Compliance and Cutting-Edge Solar Mounting Solutions: A Testament to Excellence

All arguments converge that as climate change becomes a pressing reality, traditional engineering and testing practices must evolve. Technologies that promote sustainability aren’t just a nice-to-have now; they are a necessity. In this scenario, the Miami-Dade Notice of Acceptance (NOA) certification for solar mounting solutions becomes more than a stamp of approval—it’s a symbol of excellence, signifying a commitment to the future where advancements and safety go hand-in-hand.

True leadership in the mounting industry extends beyond simply meeting regulations. It is about pushing boundaries and relentlessly pursuing excellence. This dedication translates to constant innovation in solar engineering for Unirac. Every detail, from the initial design phase, where functionality and quality are paramount, to rigorous testing that simulates the harshest environments, reflects this commitment. The result? A portfolio of meticulously crafted solar mounting solutions built for long-term performance and unwavering reliability.

Miami-Dade County’s reputation for stringent building codes is well-earned, and earning the Miami-Dade NOA approval signifies a company’s commitment to exceeding these demanding standards. Distributors, project developers, and homeowners alike can be assured that Unirac’s solar mounting solutions are built to withstand the harshest conditions, providing peace of mind for years to come.