TABLE OF CONTENTS

- A - PRO SERIES SYSTEM COMPONENTS
- B - SYSTEM LAYOUT
- C - CODE COMPLIANCE NOTES
- D - ROOF ATTACHMENT & L-FEET
- E - SPLICE
- F - THERMAL BREAK
- G - ATTACH RAIL TO L-FEET
- H - MICROINVERTER MOUNTING
- I - MICROINVERTER SYSTEM GROUNDING
- J - ELECTRICAL GROUNDING W/ ENPHASE MICRINVERTER FOR SPLICE & THERMAL BREAK
- K - STANDARD SYSTEM GROUNDING
- L - END CLAMP, FIRST MODULE
- M - BONDING MIDCLAMP
- N - REMAINING MODULES
- O - BONDING CONNECTION GROUND PATHS
- P - BONDING CONNECTION GROUND PATHS
- Q - TRIM AND END CAP INSTALLATION
- R - STANDARD SERIES SYSTEM COMPONENTS
- S - MODULE CAPABILITY
- T - ATTACH RAIL TO L-FEET
- U - ENDCLAMP & FIRST MODULE
- V - BONDING MIDCLAMP & TRIM
- W - REMAINING MODULES & TRIM
- X - TRIM RETROFIT INSTALLATION
- Y - BONDING CONNECTION GROUND PATHS
- Z - BONDING CONNECTION GROUND PATHS

APPENDIX

- APPENDIX A: SYSTEM CERTIFICATION
- APPENDIX B: FLASHKIT PRO INSTALLATION
Wrenches and Torque

<table>
<thead>
<tr>
<th>Component</th>
<th>Wrench or Socket Size</th>
<th>Recommended Torque (ft-lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid Clamp</td>
<td>1/2”</td>
<td>11</td>
</tr>
<tr>
<td>MLPE Mount</td>
<td>1/2”</td>
<td>10</td>
</tr>
<tr>
<td>End Clamp</td>
<td>1/2”</td>
<td>5</td>
</tr>
<tr>
<td>L-Foot to Rail</td>
<td>1/2”</td>
<td>30</td>
</tr>
<tr>
<td>Rail Splice</td>
<td>1/2”</td>
<td>10</td>
</tr>
</tbody>
</table>

Anti-Seize

Stainless steel hardware can seize up, a process called galling. To significantly reduce its likelihood:

1. Apply minimal lubricant to bolts only where indicated in installation process, preferably Anti-Seize commonly found at auto parts stores (Anti-seize has been factory applied to mid clamp bolts)
2. Shade hardware prior to installation, and
3. Avoid spinning stainless nuts onto bolts at high speed.

NOTE - POSITION INDICATOR: T-bolts have a slot in the hardware end corresponding to the direction of the T-Head.
PLANNING YOUR SOLARMOUNT INSTALLATIONS
The installation can be laid out with rails parallel to the rafters or perpendicular to the rafters. Note that SOLARMOUNT rails make excellent straight edges for doing layouts.
Center the installation area over the structural members as much as possible. Leave enough room to safely move around the array during installation. Some building codes and fire codes require minimum clearances around such installations, and the installer should check local building code requirements for compliance.
The length of the installation area is equal to:

Standard Series:
- the total width of the modules,
- plus 1/4” inch for each space between modules (for mid-clamp),
- plus approximately 3” (1½ inches for each Endclamp)

Pro Series:
- the total width of the modules,
- plus 1” inch for each space between modules (for mid-clamp),
- plus 0 to 1” (0 to ½ inches for each Endclamp)

RAILS MAY BE PLACED PARALLEL OR PERPENDICULAR TO RAFTERS

LAYING OUT L-FEET FOR TOP CLAMPS
L-feet, in conjunction with proper flashing equipment and techniques, can be used for attachment through existing roofing material, such as asphalt shingles, sheathing or sheet metal to the building structure.
Locate and mark the position of the L-feet lag screw holes within the installation area as shown below. Follow manufacturer module installation guide for rail spacing based on appropriate mounting locations.

NOTE: FOR EXPANSION JOINT REQUIREMENTS, REFER TO PAGE F. RAIL LENGTHS AND LOCATIONS OF L-FEET FOR EXPANSION JOINTS WILL NEED TO BE DETERMINED AT THIS STAGE IN PLANNING SYSTEM LAYOUT.

If multiple rows are to be installed adjacent to one another, it is not likely that each row will be centered above the rafters. Adjust as needed, following the guidelines below as closely as possible.

Refer to Unirac Solarmount D&E Guide & U-Builder for allowable spans and cantilevers.

SYSTEM LAYOUT INSTALLATION GUIDE

RAILS MAY BE PLACED PARALLEL OR PERPENDICULAR TO RAFTERS

LAYOUT WITH RAILS PERPENDICULAR TO RAFTERS (RECOMMENDED)

Note: Modules should be positioned so that rails are flush with edge of module or extending no more than 1/2” beyond edge of module. The modules should not extend past (overhang) the ends of rails.
SYSTEM LEVEL FIRE CLASSIFICATION
The system fire class rating requires installation in the manner specified in the SOLARMOUNT Installation Guide. SOLARMOUNT has been classified to the system level fire portion of UL 1703. This UL 1703 classification has been incorporated into our UL 2703 product certification. SOLARMOUNT has achieved system level performance for steep sloped roofs. System level fire performance is inherent in the SOLARMOUNT design, and no additional mitigation measures are required. The fire classification rating is only valid on roof pitches greater than 2:12 (slopes ≥ 2 inches per foot, or 9.5 degrees). The system is to be mounted over fire resistant roof covering rated for the application. There is no required minimum or maximum height limitation above the roof deck to maintain the system fire rating for SOLARMOUNT. Module Types & System Level Fire Ratings are listed below:

<table>
<thead>
<tr>
<th>Rail Type</th>
<th>Module Type</th>
<th>System Level Fire Rating</th>
<th>Rail Direction</th>
<th>Module Orientation</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Rail</td>
<td>Type 1, Type 2, Type 3 & Type 10</td>
<td>Class A, Class B & Class C</td>
<td>East-West</td>
<td>Landscape OR Portrait</td>
<td>None Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>North-South</td>
<td>Landscape OR Portrait</td>
<td>None Required</td>
</tr>
<tr>
<td>Light Rail</td>
<td>Type 1 & Type 2</td>
<td>Class A, Class B & Class C</td>
<td>East-West</td>
<td>Landscape OR Portrait</td>
<td>None Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>North-South</td>
<td>Landscape OR Portrait</td>
<td>None Required</td>
</tr>
</tbody>
</table>

This racking system may be used to ground and/or mount a PV module complying with UL 1703 only when the specific module has been evaluated for grounding and/or mounting in compliance with the included instructions.

UL2703 CERTIFICATION MARKING LABEL
Unirac SOLARMOUNT is listed to UL 2703. Certification marking is embossed on all mid clamps as shown. Labels with additional information will be provided. After the racking system is fully assembled, a single label should be applied to the SOLARMOUNT rail at the edge of the array. Before applying the label, the corners of the label that do not pertain to the system being installed must be removed so that only the installed system type is showing.

Note: The sticker label should be placed such that it is visible, but not outward facing.
ROOF PREPARATION: Layout and install flashing at rafter locations determined per Design and Engineering Guide.

DRILL PILOT HOLES: Center the roof attachment over the rafter and drill a pilot hole(s) for the lag bolt(s).

| NOTE: Determine lag bolt size and embedment depth. |
| Quick Tip: Pre-drill the pilot hole through the flat flashing lag bolt location for easier installation. |

FLASHING INSTALLATION: Insert the flashing so the top part is under the next row of shingles and the hole lines up with the pilot hole.

INSTALL LAG BOLTS & L-FOOT: Insert the lag bolt through the L-Foot in the order shown in the illustration. Verify proper orientation before tightening lag bolts.

For high snow load conditions, install the L-foot as shown above, and install the rail on the downslope face of the L-Foot.

SIDE MOUNT SOLARHOOK:

- Remove or slide up the roof tile, position the roof hook above the roof rafter
- Place SolarHook in the middle of the underlying interlocking tile’s valley. Drill 3/16 inch pilot holes through the underlayment into the center of the rafters. Securely fasten each tile hook to the rafters using included lag screws.
- Slide down or re-insert the tile.

See Unirac Solarhook Installation Manual for Additional Information.

See Standoffs & Flashings Installation Manual 907.2 for Additional Details.
SPLICE INSTALLATION (IF REQUIRED PER SYSTEM DESIGN)
If your installation uses SOLARMOUNT splice bars, attach the rails together before mounting to the L-feet/footings. Use splice bars only with flush installation and those that use low-profile tilt legs. A rail must be supported by more than one footing on both sides of the splice. There can be a gap between rails, up to 3/16" at the splice connections. To install, slide T-feature on splice into the T-slot on each rail, centering the splice between the two rails. Tighten each bolt until the bolt-head is flush against the splice and torqued to 10 ft-lbs. Installation is complete when the bonding hardware penetrates the opposite side of the rail and the assembly torque is achieved. T-bolts should not be placed less than a distance of 1" from the end of the rail regardless of a splice.

TORQUE VALUE (See Note on PG. A)
Hex head socket size ½" – Do not exceed 10 ft-lbs. Do not use Anti-Seize.
See Table below for max length of spliced rails. An expansion joint is required above the lengths published in the table.

Rails in splice joint configurations are considered cantilevered and must follow the cantilever rule, on both sides of the splice, which states that the maximum amount of rail that can be cantilevered is 1/3 the respective adjacent span.
EXPANSION JOINT USED AS THERMAL BREAK
Expansion joints prevent buckling of rails or system failure due to thermal expansion. Determine location of expansion joints prior to installation of L-feet and rails. To create a thermal expansion joint, set gap between rails that is sufficient for proper installation of end clamps and tooling to achieve required torque. A thermal break is required when a continuous length of spliced rails exceeds the length, in feet, shown in the table to the right. For additional concerns on thermal breaks in your specific project, please consult a licensed structural engineer.

Rails in expansion joint configurations are considered cantilevered and must follow the cantilever rule, on both sides of the expansion joint, which states that the maximum amount of rail that can be cantilevered is 1/3 the respective adjacent span. An expansion joint must not be spanned by a PV module. Installing a module over an expansion joint would defeat the goal of a thermal break and could result in damage to the array.

Bonding connection for splice used as a thermal break. Option shown uses two Ilsco lugs (Model No. GBL-4DBT P/N GBL-4DBT - see product data sheet for more details) and solid copper wire. Optional grounding may be achieved through Enphase MI. See PG. J.

<table>
<thead>
<tr>
<th>Maximum Continuous Length (ft.) of Spliced Rails</th>
<th>Solarmount Standard</th>
<th>Solarmount Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆T (°F)</td>
<td>48"</td>
<td>72"</td>
</tr>
<tr>
<td>0-40</td>
<td>86</td>
<td>105</td>
</tr>
<tr>
<td>40-50</td>
<td>70</td>
<td>93</td>
</tr>
<tr>
<td>50-60</td>
<td>70</td>
<td>81</td>
</tr>
<tr>
<td>60-70</td>
<td>62</td>
<td>69</td>
</tr>
<tr>
<td>70-80</td>
<td>54</td>
<td>69</td>
</tr>
<tr>
<td>80-90</td>
<td>54</td>
<td>69</td>
</tr>
<tr>
<td>90-100</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>100-120</td>
<td>46</td>
<td>57</td>
</tr>
<tr>
<td>120-140</td>
<td>38</td>
<td>45</td>
</tr>
</tbody>
</table>

The values displayed are the maximum allowed rail length, in feet, without a thermal break. These values apply only to the Flashkit Pro L-foot. For Flashloc Comp Mount, or if your span is less than 48", refer to the Solarmount Design & Engineering Guide for max lengths of continuous rail before a thermal break is required.

The installer is responsible for determining the maximum temperature difference (∆T) used to establish the maximum rail length, without expansion joint, at the install location. As spans increase, so does the maximum reaction force that the rail exerts on the L-foot. It is the responsibility of the installer to ensure that Maximum Reaction Force does not exceed the shear capacity of the roof connection. See SM Design and Engineering Guide for corresponding reaction forces. ∆T refers to the maximum difference in the temperature of the rail between installation and the extreme high or low temperature. The Extreme Annual Design Conditions table at the following url can be used as a reference when determining ∆T.

http://ashrae-meteo.info/

SECURE T-BOLT: Apply Anti-Seize to bolt. Rotate T-bolt into position.

ALIGN POSITION INDICATOR: Hand tighten nut until rail alignment is complete. Verify that position indicator on bolt is vertical (perpendicular to rail)

TORQUE VALUE (See Note on PG. A) 3/8” nut to 30 ft-lbs

ALIGN RAILS: Align one pair of rail ends to the edge of the installation area. The opposite pair of rail ends will overhang installation area. Do not Trim them off until the installation is complete. If the rails are perpendicular to the rafters, either end of the rails can be aligned, but the first module must be installed at the aligned end.

If the rails are parallel to the rafters, the aligned end of the rails must face the lower edge of the roof. Securely tighten all hardware after alignment is complete.

Mount modules to the rails as soon as possible. Large temperature changes may bow the rails within a few hours if module placement is delayed.
INSTALL MICROINVERTER MOUNT T-BOLT: Apply Anti-Seize and install pre-assembled ¼” dia. bonding T-bolts into top ¼” rail slot at microinverter locations. Rotate bolts into position.

INSTALL MICROINVERTER: Install microinverter on to rail. Engage with bolt.

INSTALL MICROINVERTER: TORQUE VALUE (See Note on PG. A) 1/4” nut to 10 ft-lbs w/Anti-Seize

ALIGN POSITION INDICATOR: Verify that position indicator on bolt is perpendicular to rail.
SM EQUIPMENT GROUNDING THROUGH ENPHASE MICROINVERTERS

The Enphase M215 and M250 microinverters have integrated grounding capabilities built in. In this case, the DC circuit is isolated from the AC circuit, and the AC equipment grounding conductor (EGC) is built into the Enphase Engage integrated grounding (IG) cabling.

In order to ground the SOLAR MOUNT racking system through the Enphase microinverter and Engage cable assembly, there must be a minimum of three PV modules connected to the same trunk cable within a continuous row. Continuous row is defined as a grouping of modules installed and bonded per the requirements of this installation guide sharing the same two rails. The microinverters are bonded to the SOLAR MOUNT rail via the mounting hardware. Complete equipment grounding is achieved through the Enphase Engage cabling with integrated grounding (IG). No additional EGC grounding cables are required, as all fault current is carried to ground through the Engage cable.
Enphase Microinverter (MI) Requirements (Model No. M215 & M250)

Continuous Rail & Electrical Bonding Splice
- 3 Microinverters sharing same trunk cable & rails

Expansion Joint w/ Grounding Lugs & Copper Jumper
- 3 Microinverters sharing same trunk cable & rails

Expansion Joint w/o Electrical Bonding Connection
- Min. 3 Microinverters on each side of thermal break

NOTE: The above images are sample configurations to illustrate the requirements for SM system grounding through Enphase microinverters described on page 1.
GROUNDING LUG MOUNTING DETAILS:
Details are provided for both the WEEB and Ilsco products. The WEEBLug has a grounding symbol located on the lug assembly. The Ilsco lug has a green colored set screw for grounding indication purposes. Installation must be in accordance with NFPA NEC 70, however the electrical designer of record should refer to the latest revision of NEC for actual grounding conductor cable size. Required if not using approved integrated grounding microinverters.

<table>
<thead>
<tr>
<th>GROUNDING LUG - BOLT SIZE & DRILL SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND LUG</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>WEEBLug</td>
</tr>
<tr>
<td>Ilsco Lug</td>
</tr>
</tbody>
</table>

• Torque value depends on conductor size.
• See product data sheet for torque value.

ILSCO LAY-IN LUG CONDUCTOR - UNIRAC P/N 008009P: Alternate Grounding Lug - Drill, deburr hole and bolt thru both rail walls per table.
TORQUE VALUE 5 ft lbs. (See Note on PG. A)
See ILSCO product data sheet for more details, Model No. GBL-4DBT.

NOTE: ISOLATE COPPER FROM ALUMINUM CONTACT TO PREVENT CORROSION
INSTALL MODULE END CLAMPS: The End clamp is supplied as an assembly with a 1/2" hex head bolt that is accessible at the ends of rails. The clamp should be installed on the rails prior to installing end modules.

INSTALL END CLAMPS ON RAIL: Slide end clamp on to rail by engaging the two t-guide brackets with the top slot of the rails. Ensure bolt is extended as far as possible so that clamp is positioned at max. distance from end of rail.

POSITION END CLAMPS: Slide end clamp assembly on to rail until bolt head engages with end of rail. End clamps are positioned on rails prior to the first end module and prior to the last end module.

NOTE: To assist insertion of clamp into rail slot, Pressure may be applied to top or side of bracket as shown. Do not force clamp into rail by pushing on bolt with excessive force.

INSTALL FIRST MODULE: Install the first end module onto rails with the flange of the module frame positioned between end clamps an ends of rails.

ENGAGE CLAMP: While holding module in position and with flange in full contact with rail, rotate end clamp bolt until clamp engages with flange to provide clamp force. To ensure bolt is not over-torqued, use low torque setting on drill or if using an impact driver, stop rotation as soon as impact action of driver begins. TORQUE VALUE (See table and notes on PG. A) End clamp bolt to 5 ft-lbs, No anti-seize

For best appearance, position module flush with ends of rails. Rails should not extend more than 1/2" beyond module. Module must be fully supported by rails and cannot overhang ends of rails.
INSTALL MIDCLAMPS: Midclamp is supplied as an assembly with a T-bolt for module installation. Clamp assemblies may be positioned in rail near point of use prior to module placement.

INSERT MIDCLAMP ASSEMBLY: Insert 1/4" T-Bolt into top slot of rail.

MIDCLAMP: Rotate midclamp assembly and slide until clamp is against module frame. Do not tighten nut until next module is in position. Ensure bolt is perpendicular to rail.

PLACE ADJACENT MODULE AGAINST CLAMPS: Modules must be tight against clamps with no gaps. Tighten nut to required torque.

POSITION INDICATOR - SERRATED T-BOLT: Verify the T-bolt position indicator is perpendicular to the rail.

TORQUE VALUE (See table and notes on PG. A) 11 ft-lbs. No anti-seize.
INSTALL REMAINING MID-CLAMPS:
Proceed with module installation. Engage each module with previously positioned Midclamp assemblies.

POSITION T-BOLT ALIGNMENT MARKS:
Verify that the position indicator(s) & T-bolt shaft(s) are angled in the correct position. Tighten to final torque.
TORQUE VALUE (See table and notes on PG. A) 11 ft-lbs. No anti-seize.

FINISH MODULE INSTALLATION:
Proceed with module installation. Engage each module with the previously positioned clamp assembly:
Aluminum mid clamp with stainless steel bonding pins that pierce module frame anodization to bond module to module through clamp

1. Stainless steel nut bonds aluminum clamp to stainless steel T-bolt

2. Serrated T-bolt head penetrates rail anodization to bond T-bolt, nut, clamp, and modules to SM rail

Bonding Hardware creates bond between splice bar and each rail section

1. Aluminum splice bar spans across rail gap to create rail to rail bond. Rail on at least one side of splice will be grounded.

Note: Splice bar and bolted connection are non-structural. The splice bar function is rail alignment and bonding.

Serrated flange nut removes L-foot anodization to bond L-Foot to stainless steel T-bolt

Serrated T-bolt head penetrates rail anodization to bond T-bolt, nut, and L-foot to grounded SM rail

Hex nut with captive lock washer bonds metal microinverter flange to stainless steel T-bolt

1. Serrated T-bolt head penetrates rail anodization to bond T-bolt, nut, and L-foot to grounded SM rail System ground including racking and modules may be achieved through the trunk cable of approved microinverter systems. See page J for details

Option 1: Ground Through Enphase Trunk Cable

Option 2: Ground Lug w/ Bare Copper Wire

WEEB washer dimples pierce anodized rail to create bond between rail and lug

Solid copper wire connected to lug is routed to provide final system ground connection.

NOTE: Ilsco lug can also be used when secured to the side of the rail. See page K for details
TEMPORARY BONDING CONNECTION DURING ARRAY MAINTENANCE

When removing modules for replacement or system maintenance, any module left in place that is secured with a bonding Midclamp will be properly grounded. If a module adjacent to the end module of a row is removed or if any other maintenance condition leaves a module without a bonding mid clamp, a temporary bonding connection must be installed as shown:

- Attach Ilsco SGB4 to wall of rail
- Attach Ilsco SGB4 to module frame
- Install solid copper wire jumper to Ilsco lugs

ELECTRICAL CONSIDERATIONS

SOLARMOUNT is intended to be used with PV modules that have a system voltage less than or equal to that allowable by NEC. For standard system grounding a minimum 10AWG, 105°C copper grounding conductor should be used to ground a system, according to the National Electric Code (NEC). It is the installer’s responsibility to check local codes, which may vary. See below for interconnection information.

INTERCONNECTION INFORMATION

There is no size limit on how many SOLARMOUNT & PV modules can be mechanically inter interconnected for any given configuration, provided that the installation meets the requirements of applicable building and fire codes.

GROUNDING NOTES

The installation must be conducted in accordance with the National Electric Code (NEC) and the authority having jurisdiction. Please refer to these resources in your location for required grounding lug quantities specific to your project.

The grounding / bonding components may overhang parts of the array so care must be made when walking around the array to avoid damage.

Conductor fastener torque values depend on conductor size. See product data sheets for correct torque values.

PERIODIC INSPECTION: Conduct periodic inspections for loose components, loose fasteners or any corrosion, immediately replace any affected components.
TRIM MIDCLAMPS: Ensure Trim lip is in contact with module face and verify alignment marks on T-bolts are in proper position, tighten midclamp on Trim, repeat at each gap between modules.

TORQUE VALUE (See table and notes on PG. A)
11 ft-lbs. No anti-seize.

FINISH TRIM INSTALLATION. CUT EXCESS TRIM AND INSTALL TRIM CLIPS:
Attach trim to modules with at least one trim clip at each end of array and at locations where additional support is needed. Each section of trim must be attached to modules with at least one mid clamp.

INSTALL END CAPS: End caps install as supplied on SM standard rail and SM light rail. If desired for SM light rail, the end cap may be modified as shown by hand, or by using a cutting tool.
Wrenches and Torque

<table>
<thead>
<tr>
<th>Wrench Size</th>
<th>Recommended Torque (ft-lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" Hardware</td>
<td>7/16" 10</td>
</tr>
<tr>
<td>3/8" Hardware</td>
<td>9/16" 30</td>
</tr>
<tr>
<td>#12 Hardware</td>
<td>5/16" 10</td>
</tr>
</tbody>
</table>

Torques are not designed for use with wood connectors *w/Anti-Seize.

Anti-Seize*

Stainless steel hardware can seize up, a process called galling. To significantly reduce its likelihood:
1. Apply minimal lubricant to bolts, preferably Anti-Seize commonly found at auto parts stores
2. Shade hardware prior to installation, and
3. Avoid spinning stainless nuts onto bolts at high speed.

1 RAIL: Supports PV modules. Use at least two per row of modules. Aluminum extrusion, available in mill, clear anodized, or dark anodized.
2 RAIL SPLICE: Non structural splice joins, aligns, and electrically bonds rail sections into single length of rail. Forms a rigid splice joint, 4 inches long, preassembled with bonding hardware. Available in dark anodized or mill finish.
3 L-FOOT: Use to secure rails through roofing material to building structure. Refer to loading tables or U-Build for spacing.
4 L-FOOT T-BOLT: (3/8" x 3/4" or 1") – Use one per L-foot to secure rail to L-foot. Stainless steel. Supplied with L-foot in combination with flange nut, provides electrical bond between L-foot and rail.
5 SERRATED FLANGE NUT: Use one per L-foot to secure and bond rail to L-foot. Stainless steel. Supplied with L-foot.
6 MODULE ENDCLAMP: Provides bond from rail to endclamp. Pre-assembled aluminum clamp available in clear or dark finish. Supplied washer keeps clamp and bolt upright for ease of assembly.
7 MODULE MIDCLAMP: Pre-assembled clamp provides module to module and module to rail bond. Stainless steel clamp and T-bolt. Available in clear or dark finish.
8 MICROINVERTER MOUNTING BOLT: Pre-assembled bolt and nut attaches and bonds microinverter to rail. Washer at base keeps bolt upright for ease of assembly.

NOTE - POSITION INDICATOR: T-bolts have a slot in the hardware end corresponding to the direction of the T-Head.
MODULE COMPATIBILITY

SM SOLAR MOUNT INSTALLATION GUIDE PAGE 5

Module Compatibility

<table>
<thead>
<tr>
<th>Size</th>
<th>Endclamp/Midclamp</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Size</td>
<td>Endclamp</td>
<td>30mm to 32mm (1.18in to 1.26in)</td>
</tr>
<tr>
<td>C Size</td>
<td>Endclamp</td>
<td>33mm to 36mm (1.30in to 1.42in)</td>
</tr>
<tr>
<td>D Size</td>
<td>Midclamp</td>
<td>38mm to 40mm (1.50in to 1.57in)</td>
</tr>
<tr>
<td>E Size</td>
<td>Endclamp</td>
<td>45mm to 47mm (1.77in to 1.85in)</td>
</tr>
<tr>
<td>F Size</td>
<td>Endclamp</td>
<td>49mm to 51mm (1.97in to 2.00in)</td>
</tr>
<tr>
<td>G Size</td>
<td>Endclamp</td>
<td>50mm to 51mm (1.97in to 2.00in)</td>
</tr>
</tbody>
</table>

BC Size
- Midclamp
- 2in Long T-bolt

DK Size
- Midclamp
- 2.25in Long T-bolt

EF Size
- Midclamp
- 2.5in Long T-bolt
PLACE T-BOLT INTO RAIL & SECURE BOLT: Insert 3/8” T-bolt into rail at L-foot locations. Apply Anti-Seize to bolt. Rotate T-bolt into position.

ALIGN POSITIONS INDICATOR: Hand tighten nut until rail alignment is complete. Verify that position indicator on bolt is vertical (perpendicular to rail).

TORQUE VALUE (See Note on PG. R)
3/8” nut to 30 ft-lbs

ALIGN RAILS: Align one pair of rail ends to the edge of the installation area. The opposite pair of rail ends will overhang installation area. Do not trim them off until the installation is complete. If the rails are perpendicular to the rafters, either end of the rails can be aligned, but the first module must be installed at the aligned end.

If the rails are parallel to the rafters, the aligned end of the rails must face the lower edge of the roof. Securely tighten all hardware after alignment is complete.

Mount modules to the rails as soon as possible. Large temperature changes may bow the rails within a few hours if module placement is delayed.

Alternative orientation for low snow loads

Edge Of Installation Area

Downslope
INSTALL MODULE ENDCLAMPS: The Endclamp is supplied as an assembly with a T-bolt, serrated flange nut, and washer. The washer retains the clamp at the top of the assembly. This will enable the clamp to remain upright for module installation.

INSERT ENDCLAMP T-BOLT: Insert 1/4” T-bolt into rail.

ROTATE ENDCLAMP T-BOLT: Rotate T-bolt into position. Verify that the position indicator & T-bolt shaft are angled in the correct position.

End clamps are positioned on rails prior to the first end module and installed after the last end module.

INSTALL FIRST MODULE: Install the first end module onto rails. Engage module frame with Endclamps. Verify that the position indicator & T-bolt shaft are angled in the correct position.

TORQUE VALUE (See Note on PG. R) 1/4” nuts to 10 ft-lbs. w/Anti Seize

POSITION INDICATOR - SERRATED T-BOLT: Verify the T-bolt position indicator is perpendicular to the rail.

POSITION INDICATOR - NON-SERRATED T-BOLT: Verify the T-bolt position indicator is angled as shown. FOR USE WITH MILL FINISH RAIL ONLY.
INSTALL MIDCLAMPS: Midclamp is supplied as an assembly with a T-bolt for module installation. Clamp assemblies may be positioned in rail near point of use prior to module placement.

INSERT MIDCLAMP T-BOLT: Apply Anti-Seize and insert 1/4" T-bolt into rail.

ROTATE MIDCLAMP T-BOLT: Rotate bolt into position and slide until bolt and clamp are against module frame. Do not tighten nut until next module is in position. Verify that the position indicator & T-bolt shaft are angled in the correct position.

POSITION INDICATOR - SERRATED T-BOLT: Verify the T-bolt position indicator is perpendicular to the rail.

TRIM MIDCLAMPS: Ensure Trim lip is in contact with module face and verify alignment marks on T-bolts are in proper position, tighten midclamp on Trim, repeat at each gap between modules.

TRIM INSTALLATION INSTRUCTIONS

TORQUE VALUE (See Note on PG. R)
1/4" nuts to 10 ft-lbs w/ Anti Seize
INSTALL REMAINING MID-CLAMPS: Proceed with module installation. Engage each module with previously positioned Midclamp assemblies.

NOTE: Apply Anti-Seize to each Mid Clamp prior to installation.

POSITION T-BOLT ALIGNMENT MARKS: Verify that the position indicator(s) & T-bolt shaft(s) are angled in the correct position.

TORQUE VALUE (See Note on PG. R)
1/4” nuts to 10 ft-lbs w/ Anti Seize

INSTALL ENDCLAMPS: Apply Anti-Seize and install final Endclamps in same manner as first Endclamps. Slide clamps against module.

TORQUE VALUE (See Note on PG. R)
1/4” nuts to 10 ft-lbs w/ Anti Seize

POSITION T-BOLT ALIGNMENT MARKS & CUT RAIL: Verify that the position indicator(s) & T-bolt shaft(s) are angled in the correct position. Trim off any excess rail, being careful not to cut into the roof. Allow ½” between the Endclamp and the end of the rail.

FINISH TRIM INSTALLATION, INSTALL ENDCLAMP & CUT EXCESS RAIL: Install final endclamp & Cut away excess Trim at end of array or where required for proper cantilevers. See D&E Guide or U-Builder for allowable cantilevers.

TORQUE VALUE (See Note on PG. R)
1/4” nuts to 10 ft-lbs w/ Anti Seize
PREPARATION: At front edge of array, ensure at least 3.25 inches of space between modules and roof surface and that modules are aligned to within 3/8". Plan for Trim length so that Endclamps can be properly installed.

1ST MIDCLAMP: Position Trim in front of array. Insert Midclamp into the Trim slot, aligned with the gap between the 1st two modules at either end of array. NOTE: Apply Anti-Seize to each Midclamp prior to installation

MOUNT TRIM: Position Trim beneath modules by sliding T-bolt into gap between modules and tighten. Midclamp should stay in position and support Trim. Tighten snugly enough so that Trim is held firmly in place. TORQUE VALUE: Do not exceed specified torque value (10 ft-lbs)

INSERT MIDCLAMPS: Insert T-bolt into slot and slide clamp (rotating Trim) into position between modules and leave loose. Continue to work down array, inserting Midclamps and positioning in gaps between modules.

FASTEN MIDCLAMPS: Return to each inserted Midclamp. Ensuring Trim lip is in contact with module face and verifying alignment marks on T-bolts are in proper position, tighten clamp. TORQUE VALUE (See Note on PG. R) 1/4" nuts to 10 ft-lbs w/ Anti Seize

ENDCLAMPS: Install Endclamps per previous Endclamp install instructions. TORQUE VALUE (See Note on PG. R) 1/4" nuts to 10 ft-lbs w/ Anti Seize

CLEAR T-BOLT SLOT: Rotate unattached end of Trim out and away from array so T-bolt slot (at next T-bolt insertion point) is clear of modules. This may require force to deflect the Trim slightly. Deflect only enough to insert T-bolt.

CUT EXCESS TRIM: Mark excess Trim and cut at end of array or where required for proper cantilevers.
SM SOLAR MOUNT

BONDING MIDCLAMP ASSEMBLY
1. Stainless steel Midclamp points, 2 per module, pierce module frame anodization to bond module to module through clamp.
2. Serrated flange nut bonds stainless steel clamp to stainless steel T-bolt

ENDCLAMP ASSEMBLY
1. Serrated flange nut bonds aluminum Endclamp to stainless steel T-bolt
2. Serrated T-bolt head penetrates rail anodization to bond T-bolt, nut, and Endclamp to grounded SM rail
Note: End clamp does not bond to module frame.

BONDING RAIL SPLICE BAR
1. Bonding Hardware creates bond between splice bar and each rail section
2. Aluminum splice bar spans across rail gap to create rail to rail bond. Rail on at least one side of splice will be grounded.
Note: Splice bar and bolted connection are non-structural. The splice bar function is rail alignment and bonding.

RAIL TO L-FOOT w/BONDING T-BOLT
1. Serrated flange nut removes L-foot anodization to bond L-Foot to stainless steel T-bolt
2. Serrated T-bolt head penetrates rail anodization to bond T-bolt, nut, and L-foot to grounded SM rail

BONDING MICROINVERTER MOUNT
1. Hex nut with captive lock washer bonds metal microinverter flange to stainless steel T-bolt
2. Serrated T-bolt head penetrates rail anodization to bond T-bolt, nut, and L-foot to grounded SM rail
System ground including racking and modules may be achieved through the trunk cable of approved microinverter systems. See page J for details

RACK SYSTEM GROUND
1. WEEBLUG (OR ILSCO LUG)
2. Solid copper wire connected to lug is routed to provide final system ground connection.

NOTE: ILSCO lug can also be used when secured to the side of the rail. See page K for details.
TEMPORARY BONDING CONNECTION DURING ARRAY MAINTENANCE
When removing modules for replacement or system maintenance, any module left in place that is secured with a bonding Midclamp will be properly grounded. If a module adjacent to the end module of a row is removed or if any other maintenance condition leaves a module without a bonding mid clamp, a temporary bonding connection must be installed as shown
- Attach Ilsco SGB4 to wall of rail
- Attach Ilsco SGB4 to module frame
- Install solid copper wire jumper to Ilsco lugs

ELECTRICAL CONSIDERATIONS
SOLARMOUNT is intended to be used with PV modules that have a system voltage less than or equal to 1000 VDC. For standard system grounding a minimum 10AWG, 105°C copper grounding conductor should be used to ground a 1000 VDC system, according to the National Electric Code (NEC). It is the installer’s responsibility to check local codes, which may vary. See below for interconnection information.

INTERCONNECTION INFORMATION
There is no size limit on how many SOLARMOUNT & PV modules can be mechanically interconnected for any given configuration, provided that the installation meets the requirements of applicable building and fire codes.

GROUNDING NOTES
The installation must be conducted in accordance with the National Electric Code (NEC) and the authority having jurisdiction. Please refer to these resources in your location for required grounding lug quantities specific to your project.

The grounding / bonding components may overhang parts of the array so care must be made when walking around the array to avoid damage.

Conductor fastener torque values depend on conductor size. See product data sheets for correct torque values.
The SOLARmount system has been certified and listed to the UL 2703 standard (Rack Mounting Systems and Clamping Devices for Flat-Plate Photovoltaic Modules and Panels). This standard included electrical grounding, electrical bonding, mechanical load and fire resistance testing.

In conducting these tests, specific modules are selected for their physical properties so that the certifications can be broadly applied. The following lists the specific modules that were tested and the applicability of those certifications to other modules that might come onto the market.

In addition to UL 2703 certification, Unirac performs internal testing beyond the requirements of certification tests in order to establish system functional limits, allowable loads, and factors of safety. These tests include functional system tests, and destructive load testing.

Mechanical Load Test Modules

The modules selected for UL 2703 mechanical load testing were selected to represent the broadest range possible for modules on the market. The tests performed cover the following basic module parameters:

- Frame thicknesses greater than or equal to 1.0 mm
- Basic single and double wall frame profiles (some complex frame profiles could require further analysis to determine applicability)
- Clear and dark anodized aluminum frames
- UL2703 Certification Load Ratings:
 - Down – 113.4 PSF, Up – 50.4 PSF, Down-Slope – 14.7 PSF
- Tested Loads:
 - Down – 170.10 PSF, Up – 75.60 PSF, Down-Slope – 22.05 PSF
- Maximum Area of Module = 21.06 sqft

System Level Fire Classification

The system fire class rating requires installation in the manner specified in the SOLARmount Installation Guide. SOLARmount has been classified to the system level fire portion of UL 1703. This UL 1703 classification has been incorporated into our UL 2703 product certification. Class A system level fire performance is inherent in the SOLARmount design, and no additional mitigation measures are required. The fire classification rating is only valid on roof pitches greater than 2:12 (slopes ≥ 2 inches per foot, or 9.5 degrees). There is no required minimum or maximum height limitation above the roof deck to maintain the system fire rating for SOLARmount. Module Types & System Level Fire Ratings are listed below:

<table>
<thead>
<tr>
<th>Rail Type</th>
<th>Module Type</th>
<th>System Level Fire Rating</th>
<th>Rail Direction</th>
<th>Module Orientation</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Rail</td>
<td>Type 1, Type 2, Type 3, & Type 10</td>
<td>Class A, B, & C</td>
<td>East-West, North-South</td>
<td>Landscape OR Portrait</td>
<td>None Required</td>
</tr>
<tr>
<td>Light Rail</td>
<td>Type 1 & Type 2</td>
<td>Class A, B, & C</td>
<td>East-West, North-South</td>
<td>Landscape OR Portrait</td>
<td>None Required</td>
</tr>
</tbody>
</table>

Tested Modules

<table>
<thead>
<tr>
<th>Tested Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Manufacturer</td>
</tr>
<tr>
<td>Hyundai</td>
</tr>
</tbody>
</table>
Manufacture | Module Model / Series
---|---
Aleo | P-Series & S-Series
Aptos Solar | DNA-144 & DNA 120 Series
Astronergy | CHSM6612 M, M/HV, CHSM6612P Series, CHSM6612P/HV Series, CHSM72M-HC
Axeon | AXN6610T, AXN6612T
Axitec | AXI Power, AXI Premium, AXI Black Premium
Boviet | BVM6610, BVM6612
BYD | P6K & MHK-36 Series
Centrosolar America | C-Series & E-Series
CertainTec | CTxxMxx-01, CTxxPxpx-01, CTxxxMxx-01, CTxxxPxpx-01, CTxxxMxx-02, CTxxxMxx-03, CTxxxMxx-06, CTxxxHCC-04
Eco Solargy | Orion 1000 & Apollo 1000
ET Solar | ET AC Module, ET Module

### Manufacture	Module Model / Series
Flextronics | FXS-xxxxBB
GCL | GCL-P6 & GCL-M6 Series
Hamwha SolarOne | HSL 60
Hansol | TD-AN3, TD-AN4, UB-AN1, UD-AN1
Helien | 36M, 36P 60M, 60P, 72M & 72P Series
HT Solar | HT72-156(M/P), HT72-156P-C, HT72-156P(Y)-C, HT72-156PDV(BF), HT72-156M(PD)-BF, HT60-156M-C, HT60-156M(Y)-C
Hyundai | KG, MG, RW, TG, RI, RG, TI, K1, H1 Series
ITEK | IT-SE Series
Japan Solar | JPS-60 & JPS-72 Series
Jinco | JKM & JKMS Series
Jyocera | KD-F & KU Series
LG Electronics | N1G-A, N1K-G, NPW-G, N1P-G, N2G-A, N2K-A, N2P-A, E1C-A, E1C-A, Q1C-A, Q1K-A, Q1C-A, S2W-A, Q1K-V, E1K-V, N1K-V, N1C-V, Q1C-V, N2W-V, N1K-V, N2T-JS, N2W-B3
Mission Solar Energy | MSE Mono, MSE Perc
Mitsubishi | MIE & MLE Series
Neo Solar Power Co. | D6M Series
Peimar | S6xxxM (FB/BB)
Phono Solar | PSxxxM1-20/U, PSxxxM1H-20/U, PSxxxM1H-20/UV, PSxxxM1H-20/UV, PSxxxM1H-20/UV, PSxxxM1H-20/UV
Q-Cells | Plus, Pro, Peak, G3, G4, Peak G5(SC), G6(SC)(AC), G7, G8(+), Plus, Pro, Peak L-G2, L-G4, L-G5, Peak L-G5, L-G6, L-G7 & L-G8(BFF)

- The frame profile must not have any feature that might interfere with the bonding devices that are integrated into the racking system.
- Use with a maximum over current protection device OCPD of 30A.
- Please see the SM UL2703 Construction Data Report at Unirac.com to ensure the exact solar module selected is approved for use with SM.
- Listed models can be used to achieve a Class A fire system rating, for steep slope applications, only when modules fire typed 1, 2, 3, or 10. See appendix A, page A.
Electrical Bonding and Grounding Test Modules
The list below is not exhaustive of compliant modules but shows those that have been evaluated and found to be electrically compatible with the SOLARMount system.

<table>
<thead>
<tr>
<th>Manufacture</th>
<th>Module Model / Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC</td>
<td>RECxxxTP72, RECxxxTP</td>
</tr>
<tr>
<td></td>
<td>RECxxxPE72, RECxxxPE</td>
</tr>
<tr>
<td></td>
<td>RECxxxTP2S(M)72, RECxxxTP2 BLK2,</td>
</tr>
<tr>
<td></td>
<td>RECxxxTP2(M)</td>
</tr>
<tr>
<td></td>
<td>RECxxxNP (N-PEAK)</td>
</tr>
<tr>
<td></td>
<td>RECxxxAA(BLK)</td>
</tr>
<tr>
<td>Renesola</td>
<td>All 60-cell modules</td>
</tr>
<tr>
<td>Risen</td>
<td>RSM Series</td>
</tr>
<tr>
<td>S-Energy</td>
<td>SN72 & SN60 Series</td>
</tr>
<tr>
<td>Seraphim</td>
<td>SEG-6 & SRP-6 Series</td>
</tr>
<tr>
<td>Sharp</td>
<td>NU-SA & NU-SC Series</td>
</tr>
<tr>
<td>Silfab</td>
<td>SLA-M, SLA-P, SLG-P & BC Series</td>
</tr>
<tr>
<td></td>
<td>SIL - ML, NL, BL, NT Series</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacture</th>
<th>Module Model / Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaria</td>
<td>PowerXT</td>
</tr>
<tr>
<td>Solartech</td>
<td>STU HIT, STU PERC & Quantum PERC</td>
</tr>
<tr>
<td>SolarWorld</td>
<td>Sunmodule Protect, Sunmodule Plus/Pro</td>
</tr>
<tr>
<td>Suntech</td>
<td>STP</td>
</tr>
<tr>
<td>Suniva</td>
<td>MV Series & Optimus Series (35mm)</td>
</tr>
<tr>
<td>SunEdison</td>
<td>F-Series, R-Series</td>
</tr>
<tr>
<td>SunPower</td>
<td>AC, X-Series, E-Series & P-Series</td>
</tr>
<tr>
<td>Talesun</td>
<td>TP572, TP596, TP654, TP660,</td>
</tr>
<tr>
<td></td>
<td>TP672, Hipor M, Smart</td>
</tr>
<tr>
<td>Tesla</td>
<td>SC, SC B, SC B1, SC B2</td>
</tr>
</tbody>
</table>

APPENDIX A

- The frame profile must not have any feature that might interfere with the bonding devices that are integrated into the racking system.
- Use with a maximum over current protection device OCPD of 30A.
- Please see the SM UL2703 Construction Data Report at Unirac.com to ensure the exact solar module selected is approved for use with SM.
- Listed models can be used to achieve a Class A fire system rating, for steep slope applications, only with module fire typed 1, 2, 3, or 10. See appendix A, page A.
PRE-INSTALL
- Locate roof rafters and snap chalk lines to mark the installation point for each roof attachment.
- Drill a 7/32” pilot hole at each roof attachment. Fill each pilot hole with sealant.

STEP 1 INSTALL FLASHKIT PRO FLASHING
- Add a U-shaped bead of roof sealant to the underside of the flashing with the open side of the U pointing down the roof slope. Slide the aluminum flashing underneath the row of shingles directly up slope from the pilot hole as shown. Align the indicator marks on the lower end of the flashing with the chalk lines on the roof to center the raised hole in the flashing over the pilot hole in the roof. When installed correctly, the flashing will extend under the two courses of shingles above the pilot hole.

STEP 2 INSTALL L-FOOT
- Fasten L-foot and Flashing into place by passing the included lag bolt and pre-installed stainless steel-backed EPDM washer through the L-foot EPDM grommet, and the raised hole in the flashing, into the pilot hole in the roof rafter.

STEP 3 ATTACH L-FOOT TO RAIL
- Drive the lag bolt down until the L-foot is held firmly in place. It is normal for the EPDM on the underside of the stainless steel backed EPDM washer to compress and expand beyond the outside edge of the steel washer when the proper torque is applied.

TIP:
- Use caution to avoid over-torqueing the lag bolt if using an impact driver.
- Repeat Steps 1 and 2 at each roof attachment point.

- Insert the included 3/8”-16 T-bolts into the lower slot on the Rail (sold separately), spacing the bolts to match the spacing between the roof attachments.

- Position the Rail against the L-Foot and insert the threaded end of the T-Bolt through the continuous slot in the L-Foot. Apply anti-seize to bolt threads to prevent galling of the T-bolt and included 3/8” serrated flange nut. Place the 3/8” flange nut on the T-bolt and finger tighten. Repeat STEP 3 until all L-Feet are secured to the Rail with a T-bolt. Adjust the level and height of the Rail and torque each bolt to 30ft-lbs.